Abstract

T cell receptor (TCR) delta and alpha variable region genes are assembled from germ-line gene segments located in a single chromosomal locus in which TCR delta segments are situated between TCR alpha segments. The TCR alpha enhancer (E alpha) located at the 3' end of the TCR alpha/delta locus functions over a long chromosomal distance to promote TCR alpha rearrangement and maximal TCR delta expression; whereas the TCR delta enhancer (E delta) is located among the TCR delta segments and functions with additional element(s) to mediate TCR delta rearrangement. We used gene-targeted mutation to evaluate whether the identity of E alpha and the position of E delta are critical for the developmental stage-specific assembly of TCR delta and alpha variable region genes. Specific replacement of E alpha with E delta, the core E alpha element (E alpha C), or the Ig heavy chain intronic enhancer (iE mu), all of which promote accessibility in the context of transgenic V(D)J recombination substrates, did not promote a significant level of TCR alpha rearrangement beyond that observed in the absence of E alpha. Therefore, the identity and full complement of E alpha-binding sites are critical for promoting accessibility within the TCR alpha locus. In the absence of the endogenous E delta element, specific replacement of E alpha with E delta also did not promote TCR delta rearrangement. However, deletion of intervening TCR alpha/delta locus sequences to restore the inserted E delta to its normal chromosomal position relative to 5' sequences rescued TCR delta rearrangement. Therefore, unlike E alpha, E delta lacks ability to function over the large intervening TCR alpha locus and or E delta function requires proximity to additional upstream element(s) to promote TCR delta accessibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call