Abstract

Halide perovskites emerged as a revolutionary family of high-quality semiconductors for solar energy harvesting and energy-efficient lighting. There is mounting evidence that the exceptional optoelectronic properties of these materials could stem from unconventional electron-phonon couplings, and it has been suggested that the formation of polarons and self-trapped excitons could be key to understanding such properties. By performing first-principles simulations across the length scales, here we show that halide perovskites harbor a uniquely rich variety of polaronic species, including small polarons, large polarons, and charge density waves, and we explain a variety of experimental observations. We find that these emergent quasiparticles support topologically nontrivial phonon fields with quantized topological charge, making them nonmagnetic analog of the helical Bloch points found in magnetic skyrmion lattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.