Abstract

To develop dental restorative materials with enamel-like structures, ultralong hydroxyapatite (HA) nanowires were synthesized by a hydrothermal method, followed by functionalization with 3-methacryloxypropyltrimethoxysilane (KH-570). The mixture of HA nanowires, KH-570, and light initiator was stirred and centrifuged. The precipitate was vacuum filtered to remove excessive KH-570 and then pressured under cold isostatic pressing (10 MPa × 24 h). Finally, the block was polymerized by lighting. Scanning electron microscopy and transmission electron microscopy showed that HA nanowires with aspect ratios >1,000 were assembled into enamel rod–like microstructures and evenly dispersed in the polymerized KH-570 silane matrix to form enamel-like structures. Thermogravimetric analysis demonstrated that the content of HA nanowires reached 72 wt% in the composite. The enamel-like composite showed a similar hardness, frictional property, and acid-etching property to those of enamel and a comparable or even better diametral tensile strength and compressive strength than some commercial composite resins in mechanical tests in vitro. In addition, the enamel-like composite had good cytocompatibility. Such enamel-like composites may have the potential to be used in biomimetic tooth restorations in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call