Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is prone to metastasis and therapy resistance. Owing to its aggressive nature and limited availability of targeted therapies, TNBC is associated with higher mortality as compared to other forms of breast cancer. In order to develop new therapeutic options for TNBC, we characterized the factors involved in TNBC growth and progression. Here, we demonstrate that N-acylsphingosine amidohydrolase 1 (ASAH1) is overexpressed in TNBC cells and is regulated via p53 and PI3K-AKT signaling pathways. Genetic knockdown or pharmacological inhibition of ASAH1 suppresses TNBC growth and progression. Mechanistically, ASAH1 inhibition stimulates dual-specificity phosphatase 5 (DUSP5) expression, suppressing the mitogen-activated protein kinase (MAPK) pathway. Furthermore, pharmacological cotargeting of the ASAH1 and MAPK pathways inhibits TNBC growth. Collectively, we unmasked a novel role of ASAH1 in driving TNBC and identified dual targeting of the ASAH1 and MAPK pathways as a potential new therapeutic approach for TNBC treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.