Abstract

The efficiency of Eu(3+) luminescence by energy transfer from an antenna ligand can be strongly dependent on the metal ion coordination geometry. The geometric component of the Eu(III) sensitization has been probed using series of tetradentate 1,2-HOPO derivatives that are connected by bridges of varying length and geometry. The ligands are N,N'-(1,2-phenylene)bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) for the ligand (L(1)), 1-hydroxy-N-(2-(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamido)benzyl)-6-oxo-1,6-dihydropyridine-2-carboxamide (L(2)) and N,N'-(1,2-phenylenebis(methylene))bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) (L(3)). Spectroscopic characterization of both the Gd(III) and the Eu(III) metal complexes, time-dependent density functional theory (TD-DFT) analysis of model compounds and evaluation of the kinetic parameters for the europium emission were completed. Some striking differences were observed in the luminescence quantum yield by altering the bridging unit. The [Eu(L(2))(2)](-) derivative shows efficient sensitization coupled with good metal centered emission. For [Eu(L(3))(2)](-), the large quenching of the luminescence quantum yield compared to [Eu(L(2))(2)](-) is primarily a result of one inner sphere water molecule bound to the europium cation while for [Eu(L(1))(2)](-), the low luminescence quantum yield can be attributed to inefficient sensitization of the europium ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.