Abstract

Computer simulations have been used by us since the early 1970s to gain an understanding of the spacing and movement patterns of confined animals. The work has progressed from the early stages, in which we used randomly positioned points, to current investigations of animats (computer-simulated animals), which show low levels of learning via artificial neural networks. We have determined that 1) pens of equal floor area but of different shape result in different spatial and movement patterns for randomly positioned and moving animats; 2) when group size increases under constant density, freedom of movement approaches an asymptote at approximately six animats; 3) matching the number of animats with the number of corners results in optimal freedom of movement for small groups of animats; and 4) perimeter positioning occurs in groups of animats that maximize their distance to first- and second-nearest neighbors. Recently, we developed animats that move, compete for social dominance, and are motivated to obtain resources (food, resting sites, etc.). We are currently developing an animat that learns its behavior from the spatial and movement data collected on live pigs. The animat model is then used to pretest pen designs, followed by new pig spatial data fed into the animat model, resulting in a new pen design to be tested, and the steps are repeated. We believe that methodologies from artificial-life and artificial intelligence can contribute to the understanding of basic animal behavior principles, as well as to the solving of problems in production agriculture in areas such as animal housing design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.