Abstract

The past few years have witnessed a growing rate of attraction in adoption of Artificial Intelligence (AI) techniques to solve different engineering problems. Besides, Short Term Electrical Load Forecasting (STLF) is one of the important concerns of power systems and accurate load forecasting is vital for managing supply and demand of electricity. This study estimates short term electricity loads of Iran by means of Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANN) and Genetic Algorithm (GA) which are the most successful AI techniques in this field. In order to improve forecasting accuracy, all AI techniques are equipped with preprocessing concept, and effects of this concept on performance of each AI technique are investigated. Finally, outcomes of the approaches are evaluated and compared by means of the mean absolute percentage error (MAPE). Results show that data preprocessing can significantly improve performance of the AI techniques. Meanwhile, ANFIS outcomes are more approximate to the actual loads than those of ANN and GA, so it can be considered as a suitable tool to deal with STLF problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.