Abstract

Non-Abelian gauge fields give rise to nontrivial topological physics. Here we develop a scheme to create an arbitrary SU(2) lattice gauge field for photons in the synthetic frequency dimension using an array of dynamically modulated ring resonators. The photon polarization is taken as the spin basis to implement the matrix-valued gauge fields. Using a non-Abelian generalization of the Harper-Hofstadter Hamiltonian as a specific example, we show that the measurement of the steady-state photon amplitudes inside the resonators can reveal the band structures of the Hamiltonian, which show signatures of the underlying non-Abelian gauge field. These results provide opportunities to explore novel topological phenomena associated with non-Abelian lattice gauge fields in photonic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.