Abstract
A back-propagation artificial neural network (ANN) model is proposed to discriminate zones of high mineral potential in the Rodalquilar gold field, south-east Spain, using remote sensing and mineral exploration data stored in a GIS database. A neural network model with three hidden units was selected by means of the k -fold cross-validation method. The trained network estimated a gold potential map efficiently, indicating that both previously known and unknown potentially mineralized areas can be detected. These initial results suggest that ANN can be an effective tool for mineral exploration spatial data modelling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.