Abstract

The present research investigates the application of artificial intelligence tool for modelling and multi-objective optimization of friction stir welding parameters of dissimilar AA5083-O–AA6063-T6 aluminium alloys. The experiments have been conducted according to a well-designed L27 orthogonal array. The experimental results obtained from L27 experiments were used for developing artificial neural network-based mathematical models for tensile strength, microhardness and grain size. A hybrid approach consisting of artificial neural network and genetic algorithm has been used for multi-objective optimization. The developed artificial neural network-based models for tensile strength, microhardness and grain size have been found adequate and reliable with average percentage prediction errors of 0.053714, 0.182092 and 0.006283%, respectively. The confirmation results at optimum parameters showed considerable improvement in the performance of each response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.