Abstract
This paper aims to develop an artificial neural networkbased forecasting model employing a nonlinear focused time-delayed neural network (FTDNN) for energy commodity market forecasts. To validate the proposed model, crude oil and natural gas prices are used for the period 2007–2020, including the Covid-19 period. Empirical findings show that the FTDNN model outperforms existing baselines and artificial neural networkbased models in forecasting West Texas Intermediate and Brent crude oil prices and National Balancing Point and Henry Hub natural gas prices. As a result, we demonstrate the predictability of energy commodity prices during the volatile crisis period, which is attributed to the flexibility of the model parameters, implying that our study can facilitate a better understanding of the dynamics of commodity prices in the energy market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.