Abstract

The need for improved asphalt pavements has led to the exploration of nanomaterials such as graphene oxide (GO). This study investigates the potential of GO to enhance the performance of asphalt concrete (AC) with a nominal maximum aggregate size of 12.5 mm (AC_12.5) pavements, a commonly used material in highway construction that has not been extensively studied with GO modification. The main objective is to evaluate the impact of varying GO content (1%, 1.5%, and 2%) on the key technical properties of AC_12.5, including rutting resistance, moisture stability, and tensile capacity. A series of performance tests, including Marshall stability, residual stability, splitting tensile strength, and dynamic modulus, were conducted on AC_12.5 samples with varying GO content. Furthermore, a mechanistic– empirical (M-E) approach was employed to compare the rutting resistance of GO-modified pavements with that of conventional pavements. Initial findings suggest that GO incorporation significantly enhanced the mechanical properties of AC_12.5 compared with the control mixture. Performance tests indicated improved rutting resistance, moisture stability, and tensile capacity. The M– E analysis demonstrated superior rutting resistance in the GO-modified pavement structures. The findings confirm the potential of GO as a promising nanomaterial for enhancing the performance of AC_12.5 pavements. The observed improvements in key mechanical properties and rutting resistance suggest its feasibility for developing more durable, sustainable, and cost-effective roads in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.