Abstract

Brain-Computer Interface (BCI) is a technology that uses electroencephalographic (EEG) signals to control external devices, such as Functional Electrical Stimulation (FES). Visual BCI paradigms based on P300 and Steady State Visually Evoked potentials (SSVEP) have shown high potential for clinical purposes. Numerous studies have been published on P300- and SSVEP-based non-invasive BCIs, but many of them present two shortcomings: (1) they are not aimed for motor rehabilitation applications, and (2) they do not report in detail the artificial intelligence (AI) methods used for classification, or their performance metrics. To address this gap, in this paper the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology was applied to prepare a systematic literature review (SLR). Papers older than 10 years, repeated or not related to a motor rehabilitation application, were excluded. Of all the studies, 51.02% referred to theoretical analysis of classification algorithms. Of the remaining, 28.48% were for spelling, 12.73% for diverse applications (control of wheelchair or home appliances), and only 7.77% were focused on motor rehabilitation. After the inclusion and exclusion criteria were applied and quality screening was performed, 34 articles were selected. Of them, 26.47% used the P300 and 55.8% the SSVEP signal. Five applications categories were established: Rehabilitation Systems (17.64%), Virtual Reality environments (23.52%), FES (17.64%), Orthosis (29.41%), and Prosthesis (11.76%). Of all the works, only four performed tests with patients. The most reported machine learning (ML) algorithms used for classification were linear discriminant analysis (LDA) (48.64%) and support vector machine (16.21%), while only one study used a deep learning algorithm: a Convolutional Neural Network (CNN). The reported accuracy ranged from 38.02 to 100%, and the Information Transfer Rate from 1.55 to 49.25 bits per minute. While LDA is still the most used AI algorithm, CNN has shown promising results, but due to their high technical implementation requirements, many researchers do not justify its implementation as worthwile. To achieve quick and accurate online BCIs for motor rehabilitation applications, future works on SSVEP-, P300-based and hybrid BCIs should focus on optimizing the visual stimulation module and the training stage of ML and DL algorithms.

Highlights

  • One of the most traditional neurorehabilitation strategies aimed at restoring motor functions lost due to various lesions of the nervous system [stroke, spinal cord injury (SCI), cerebral palsy, among others] is based on the neurofacilitation approach for proprioceptive stimulation and guidance of brain plasticity processes (Carr and Shephered, 2006; Hindle et al, 2012)

  • The main aim of this review is to gather all relevant published works that cover the current state-of-the-art in P300 and state visually evoked potentials (SSVEP)-based Brain-Computer Interface (BCI) systems, with an emphasis on those used for motor rehabilitation applications and the Artificial Intelligence (AI) algorithms used for detection and classification by analyzing a large number of recent publications

  • The hybrid SSVEP/MI system reported by Savicet al. (2012) is used to active a Functional Electrical Stimulation (FES) system, where the SSVEP signal is used for target selection and the MI strategy for activation of the FES-assisted reach-to-grasp of a certain object

Read more

Summary

Introduction

One of the most traditional neurorehabilitation strategies aimed at restoring motor functions lost due to various lesions of the nervous system [stroke, spinal cord injury (SCI), cerebral palsy, among others] is based on the neurofacilitation approach for proprioceptive stimulation and guidance of brain plasticity processes (Carr and Shephered, 2006; Hindle et al, 2012). Some key elements for motor and sensory functional recovery (Jang, 2013) are repetition of movement patterns (Zbogar et al, 2017), somatosensory stimulation (Hara, 2008) and the application of stimuli outside the motor and sensory pathways (visual, auditory, or proprioceptive) (Bach-y-Rita and Kercel, 2003; Bento et al, 2012; Takeuchi and Izumi, 2012; Galinska, 2015) These neurorehabilitation strategies make possible to re-educate neural tissue that is not completely damaged or to reactivate other areas to form new synaptic connections (Gordon, 2005). The theoretical argument is that therapeutic interventions based on these neurorehabilitation technologies take advantage of the preserved neuro-muscular structures and functions, and that they can help to compensate or re-learn the functions previously performed by the damaged areas, improving the sensory-motor function (Iosa et al, 2012; Altaf, 2019)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call