Abstract
The aim of this research is to investigate low-power circuit concepts for the hardware implementation of an adaptively controlled stimulator for future retinal implants. For this specific application purpose, the circuit complexity must be low, while at the same time the functionality is extended. This paper presents the implementation of an analog spike detection circuit to detect spikes from extracellular recordings and to perform electrode individual firing-rate measurements in a spatially high-density electrode array, which has a reduced circuit complexity compared to the widely-used nonlinear energy operator (NEO) and allows stronger suppression of local oscillations following the retinal remodeling. The module is verified by emulating extracellular activities using the Hodgkin-Huxley model. This recording-unit is integrated into an eight-channel closed-loop-neurostimulator prototype. It dissipates <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$11.4 ~\mu \text{W}$ </tex-math></inline-formula> and requires an area of 0.066 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> by using a 350 nm CMOS process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have