Abstract

Arsenite is a radiosensitizer of glioma cells both in vitro and in vivo; however, the underlying mechanism of action is unclear. Radiosensitizers specific for p53-deficient tumors are a promising adjunct to radiotherapy because, unlike normal cells, many tumor cells lack p53. Previously, we demonstrated that arsenite sensitizes the p53-deficient glioma cell line U87MG-E6 to X-rays. Using flowcytometry, we expand these findings to p53-proficient U87MG cells exposed to heavy ion beams, including carbon and iron ions. Arsenite sensitized U87MG-E6, but not U87MG, cells to heavy ion beams and X-rays. Cell cycle analysis indicated that sensitization of U87MG-E6 was related to an increase in the percentage of cells in the late S/G2/M phases after combined treatment with arsenite, especially when carbon ion beams were used. Induction of γH2AX was significant in U87MG-E6, but not in U87MG, cells after irradiation with carbon ion beams plus arsenite. Arsenite sensitizes cells by increasing the percentage of cells in the late S/G2/M phases after irradiation, possibly via inhibition of DNA repair in the context of p53 deficiency. The findings provide information that may be useful for the development of advanced radiotherapy protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call