Abstract

Seafood is an important source of arsenic (As) exposure for humans. In this study, 34 seafood samples (fishes, shellfishes, and seaweeds) collected from different markets in China were analysed for total and speciated As before and after boiling. Furthermore, the As bioaccessibility was also assessed using a physiologically based extraction test combined with the Simulator of Human Intestinal Microbial Ecosystems. The results showed that the total As (tAs) contents of seaweeds (raw: 44.12; boiled: 31.13, μg·g-1 dw) were higher than those of shellfishes (raw: 8.34; boiled: 5.14, μg·g-1 dw) and fishes (raw: 6.01; boiled: 3.25, μg·g-1 dw). Boiling significantly decreased the As content by 22.24% for seaweeds, 32.27% for shellfishes, and 41.42% in fishes, respectively (p<0.05). During invitro digestion, the bioaccessibility of tAs and arsenobetaine (AsB) significantly varied between the investigated species of seafood samples in gastric (G) and small intestinal phases (I) (p<0.05). Higher tAs bioaccessibility (G: 68.6%, I: 81.9%) were obtained in fishes than shellfishes (G: 40.9%, I: 52.5%) and seaweeds (G: 31%, I: 53.6%). However, there was no significant differences in colonic phase (C) (p>0.05). With the effect of gut microbiota, arsenate (AsⅤ) was transformed into monomethylarsonic acid (MMA) and arsenite (AsⅢ) in C. Moreover, as for seaweeds, an unknown As compound was produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.