Abstract

To better understand the risk assessment of Lead (Pb) in contaminated soils, 78 soil samples were collected from different locations in China and Pb bioaccessibility was assessed using the PBET (The Physiologically Based Extraction Test) method combined with SHIME (The Simulator of the Human Intestinal Microbial Ecosystem), and Pb bioaccessibility data from the PBET method on 88 soil samples that found in the literature were also used for the assessment. For all the soils, the mean Pb bioaccessibility was as follows: the gastric phase (31.25%) > colon phase (17.78%) > small intestinal phase (10.13%). The values of Pb bioaccessibility in most soils were lower than 60%, which is the typical default assumption for Pb (RBA, relatively bioavailability) by the US EPA. Mean Pb bioaccessibility (41.10% and 14.00% for gastric and small intestinal phases, respectively) in the present study was slightly higher than the values from the literature (24.80% and 8.68% for gastric and small intestinal phases, respectively) in the gastrointestinal tract. Mean Pb bioaccessibility was lower in acidic soil during the small intestinal phase, while the values for the alkaline soil were higher in the small intestinal and colon phases. In the gastric and small intestinal phases, mean Pb bioaccessibility in farming soils was slightly lower than it was in mining soils. However, the mean Pb bioaccessibility from farming soils was increased compared with mining soils in the colon phase given the action of human gut microbiota. Soil pH and type are important factors for predicting soil Pb bioaccessibility and health risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call