Abstract

An essential goal of the static random access memory (SRAM) array termination design is to both terminate as well as maintain a homogeneous environment for the active edge cells in the array. Local layout effects (LLEs) in the array termination design can exert influence on the active array SRAM devices in close proximity to the termination region, which can lead to undesirable inhomogenuities in the array. The impact of LLEs, originating from the array termination design, on SRAM read performance and $V_{\min }$ fail count, are examined using a 14-nm FinFET technology. Large-scale SRAM read performance statistics are analyzed to identify elevated read currents and low-voltage fail counts associated with the array termination. The root cause and modulating factors are explored, and potential solution paths are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.