Abstract
Surface chemical modification of polymer thin films induced by sputter etching was studied by x‐ray photoelectron spectroscopy (XPS) and infrared reflection–absorption spectroscopy (IRRAS). The polymers studied were polystyrene, polypropylene, and poly(ethylene terephthalate) (PET). Oxygen and argon sputter etching of these polymers causes surface oxidation and possibly crosslinking; trends in polymer oxidation can be correlated with the etchant gas, etch power, and initial material properties. For polystyrene and polypropylene, the predominant new functionalities formed are C=O and C–O groups; the breadth of the infrared absorption bands suggests that many different types of these groups exist. For PET, the predominant damage mechanism is crosslinking, with only a slight degree of oxidation resulting from oxygen sputter etching. This work suggests that the information provided by XPS and IRRAS is highly complimentary and will be useful in future studies of polymer functionalization and derivatization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.