Abstract
Iterative decoders such as turbo decoders have become integral components of modern broadband communication systems because of their ability to provide substantial coding gains. A key computational kernel in iterative decoders is the maximum a posteriori probability (MAP) decoder. The MAP decoder is recursive and complex, which makes high-speed implementations extremely difficult to realize. In this paper, we present block-interleaved pipelining (BIP) as a new high-throughput technique for MAP decoders. An area-efficient symbol-based BIP MAP decoder architecture is proposed by combining BIP with the well-known look-ahead computation. These architectures are compared with conventional parallel architectures in terms of speed-up, memory and logic complexity, and area. Compared to the parallel architecture, the BIP architecture provides the same speed-up with a reduction in logic complexity by a factor of M, where M is the level of parallelism. The symbol-based architecture provides a speed-up in the range from 1 to 2 with a logic complexity that grows exponentially with M and a state metric storage requirement that is reduced by a factor of M as compared to a parallel architecture. The symbol-based BIP architecture provides speed-up in the range M to 2M with an exponentially higher logic complexity and a reduced memory complexity compared to a parallel architecture. These high-throughput architectures are synthesized in a 2.5-V 0.25-/spl mu/m CMOS standard cell library and post-layout simulations are conducted. For turbo decoder applications, we find that the BIP architecture provides a throughput gain of 1.96 at the cost of 63% area overhead. For turbo equalizer applications, the symbol-based BIP architecture enables us to achieve a throughput gain of 1.79 with an area savings of 25%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.