Abstract

This paper questions the relevance of microscopic traffic models for estimating the impact of traffic strategies on fuel consumption. Urban driving cycles from the ARTEMIS database are simplified into piecewise linear speed profiles to mimic the classical outputs of microscopic traffic flow models. Fuel consumption is estimated for real and simplified trajectories and links between kinematics and the fuel consumption errors are investigated. Simplifying trajectories causes fuel consumption underestimation, from −1.2 to −5.2% on average according to the level of simplification; errors can approach −20% for some cycles. A focus on kinematic phases indicates that the maximum speed reached and the time decelerating are the main influences on fuel consumption. Finally, in the case where maximum speeds are estimated correctly, it is shown that errors committed at each kinematic phase when acceleration distributions are approximated by their mean values, converge towards small errors over complete cycles. A method is developed to quantify and reduce these errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.