Abstract
In a voice controlled smart-home, a controller must respond not only to user’s requests but also according to the interaction context. This paper describes Arcades, a system which uses deep reinforcement learning to extract context from a graphical representation of home automation system and to update continuously its behavior to the user’s one. This system is robust to changes in the environment (sensor breakdown or addition) through its graphical representation (scale well) and the reinforcement mechanism (adapt well).The experiments on realistic data demonstrate that this method promises to reach long life context-aware control of smart-home.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.