Abstract
The design features of high-power ore furnaces are the transformer’s secondary winding made of 4–8 isolated splits and a busbar assembly made of the same number of paired bifilar bus tubes, spaced 20–40 mm apart. Only an arc fault (AF) can occur between paired bus tubes in such an assembly, during which the assembly with currents of 35–150 kA can be completely destructed. To protect against AFs, these bus tubes are wrapped in several layers of gluey fiberglass cloth. However, such cloth is abraded under the impact of airborne abrasive dust particles during furnace operation, and coal dust in the air creates the conditions for an AF. A new current protection with a magnetic current transformer (MCT), which prevents busbar assembly destruction, is suggested. Its design is based on the analysis of the distribution of busbar assembly magnetic fields. The choice of MCT position is justified, and parameters of its windings are determined; MCT construction and fastening are described, and a technique for reliable MCT output signal transmission under strong magnetic fields and with a specified protection threshold is suggested. These protections are currently the simplest and cheapest tool for preventing the complete destruction of an expensive busbar assembly in events of AFs during it.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have