Abstract
AbstractIn this paper, three high‐order accurate and unconditionally energy‐stable methods are proposed for solving the conservative Allen–Cahn equation with a space–time dependent Lagrange multiplier. One is developed based on an energy linearization Runge–Kutta (EL–RK) method which combines an energy linearization technique with a specific class of RK schemes, the other two are based on the Hamiltonian boundary value method (HBVM) including a Gauss collocation method, which is the particular instance of HBVM, and a general class of cases. The system is first discretized in time by these methods in which the property of unconditional energy stability is proved. Then the Fourier pseudo‐spectral method is employed in space along with the proofs of mass conservation. To show the stability and validity of the obtained schemes, a number of 2D and 3D numerical simulations are presented for accurately calculating geometric features of the system. In addition, our numerical results are compared with other known structure‐preserving methods in terms of numerical accuracy and conservation properties.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have