Abstract

This paper focuses on the question of how unconditional stability can be achieved via multistep ImEx schemes, in practice problems where both the implicit and explicit terms are allowed to be stiff. For a class of new ImEx multistep schemes that involve a free parameter, strategies are presented on how to choose the ImEx splitting and the time stepping parameter, so that unconditional stability is achieved under the smallest approximation errors. These strategies are based on recently developed stability concepts, which also provide novel insights into the limitations of existing semi-implicit backward differentiation formulas (SBDF). For instance, the new strategies enable higher order time stepping that is not otherwise possible with SBDF. With specific applications in nonlinear diffusion problems and incompressible channel flows, it is demonstrated how the unconditional stability property can be leveraged to efficiently solve stiff nonlinear or nonlocal problems without the need to solve nonlinear or nonlocal problems implicitly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.