Abstract

Diarrhetic shellfish poisoning (DSP) toxins are a class of natural organic contaminants that pose a serious threat not only to marine ecosystems and fisheries but also to human health. They are widely distributed in coastal and offshore waters around the world. However, the persistence and photochemical degradation characteristics of DSP in an aqueous environment are still unclear. This study aimed to elucidate the photochemical fate of two representative DSP toxins, namely, okadaic acid (OA) and dinophysistoxin-1 (DTX1). Results showed that photo-mediated chemical reactions play a crucial role in eliminating DSP toxins in seawater. However, the degradation of OA and DTX1 was relatively slow under natural solar radiation, with a removal efficiency of 90.0% after exposure for more than 20 days. When the reaction solutions of OA and DTX1 were exposed to Hg lamp radiation, their degradation followed pseudo-first-order kinetics, and was remarkably influenced by seawater pH and metal-ion concentration. A total of 24 tentative transformation products (TPs) of OA and DTX1 were identified via liquid chromatography high-resolution mass spectrometry. C12 (C43H66O11) and C24 (C44H68O11) were the main TPs. The following possible photodegradation pathways were proposed: decarboxylation, photoinduced hydrolysis, chain scission, and photo-oxidation. Toxicity assays via protein phosphatase 2A inhibition proved that photochemical processes could significantly reduce the DSP toxicity of irradiated solutions by approximately 88%. This work provides an enhanced understanding of the fate of DSP toxins in the aqueous environment, allowing for an improved assessment of their environmental impacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call