Abstract
Many multiagent domains where cooperation among agents is crucial to achieving a common goal can be modeled as coalitional games. However, in many of these domains, agents are unequal in their to affect the outcome of the game. Prior research on weighted voting games has explored indices, which reflect how much real power a voter has. Although primarily used for voting games, these indices can be applied to any simple coalitional game. Computing these indices is known to be computationally hard in various domains, so one must sometimes resort to approximate methods for calculating them.We suggest and analyze randomized methods to approximate indices such as the Banzhaf index and the Shapley-Shubik index. Our approximation algorithms do not depend on a specific representation of the game, so they can be used in any simple coalitional game. Our methods are based on testing the game's value for several sample coalitions. We also show that no approximation algorithm can do much better for general coalitional games, by providing lower bounds for both deterministic and randomized algorithms for calculating indices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.