Abstract
False-name manipulation refers to the question of whether a player in a weighted voting game can increase her power by splitting into several players and distributing her weight among these false identities. Relatedly, the beneficial merging problem asks whether a coalition of players can increase their power in a weighted voting game by merging their weights. For the problems of whether merging or splitting players in weighted voting games is beneficial in terms of the Shapley-Shubik and the normalized Banzhaf index, merely NP-hardness lower bounds are known, leaving the question about their exact complexity open. For the Shapley-Shubik and the Banzhaf index, we raise these lower bounds to hardness for PP, probabilistic polynomial time, a class considered to be by far a larger class than NP. For both power indices, we provide matching upper bounds for beneficial merging and, whenever the new players' weights are given, also for beneficial splitting, thus resolving previous conjectures in the affirmative. Relatedly, we consider the beneficial annexation problem, asking whether a single player can increase her power by taking over other players' weights. It is known that annexation is never disadvantageous for the Shapley-Shubik index, and that beneficial annexation is NP-hard for the normalized Banzhaf index. We show that annexation is never disadvantageous for the Banzhaf index either, and for both the Shapley-Shubik index and the Banzhaf index we show that it is NP-complete to decide whether annexing another player is advantageous. Moreover, we propose a general framework for merging and splitting that can be applied to different classes and representations of games.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.