Abstract
The approximate preservation of quadratic first integrals (QFIs) of differential systems in the numerical integration with Runge–Kutta (RK) methods is studied. Conditions on the coefficients of the RK method to preserve all QFIs up to a given order are obtained, showing that the pseudo-symplectic methods studied by Aubry and Chartier (BIT 98(3):439–461, 1998) of algebraic order p preserve QFIs with order q = 2p. An expression of the error of conservation of QFIs by a RK method is given, and a new explicit six-stage formula with classical order four and seventh order of QFI-conservation is obtained by choosing their coefficients so that they minimize both local truncation and conservation errors. Several formulas with algebraic orders 3 and 4 and different orders of conservation have been tested with some problems with quadratic and general first integrals. It is shown that the new fourth-order explicit method preserves much better the qualitative properties of the flow than the standard fourth-order RK method at the price of two extra function evaluations per step and it is a practical and efficient alternative to the fully implicit methods required for a complete preservation of QFIs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.