Abstract
Genomic medicine has features that make it preference sensitive and amenable to model-based health economic evaluation. Preferences of patients, caregivers, and clinicians related to the uptake and delivery of genomic medicine technologies and services that are not captured in health state utility weights can affect the intervention's cost-effectiveness and budget impact. However, there is currently no established or agreed-on approach for integrating preference information into economic evaluations. The objective of this study was to explore approaches for incorporating preferences into model-based economic evaluations of genomic medicine and to develop a conceptual framework to consider preferences in health economic models. We conducted a critical interpretive synthesis of published literature guided by the following question: how have preferences been incorporated into model-based economic evaluations of genomic medicine interventions? We integrated findings from the literature and expert opinion to develop a conceptual framework of ways in which preferences influence economic value in the context of genomic medicine. Our synthesis included 14 articles. Revealed and stated preference data were used to estimate choice probabilities and to value outcomes. Our conceptual framework situates preference data in the context of health system, patient, clinician, and family characteristics. Preference data were sourced from clinicians, patients and families impacted by a condition or intervention, and the general public. Evaluations employed various types of models, including discrete event simulation, microsimulation, Markov, and decision tree models. When evaluating the broad benefits and costs of implementing new interventions, sufficiently accounting for preferences in the form of model inputs and valuation of outcomes in economic evaluations is important to avoid biased implementation decisions. Incorporation of preference data may improve alignment between predicted and real-world uptake and more accurately estimate welfare impacts, and this study provides critical insights to support researchers who seek to incorporate preference information into model-based health economic evaluations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have