Abstract
When performing effect studies to investigate the impact of microplastic (MP) on cell lines, algae, or daphnia, it is advantageous if such experiments can be performed without the use of surfactants. The need for surfactants arises from the fact that finely milled pristine MP particles generally are hydrophobic. Methods for thepreparation of larger amounts of hydrophilic and hence artificially aged MP particles and approaches for their characterization are of high importance. Here we present methods to artificially age polyethylene terephthalate (PET) and low-density polyethylene (PE) using alkaline and acidic treatments that reproducibly result in large quantities of particles below 5µm with considerably increased hydrophilicity. The artificially aged MP particles were characterized using particle counting by single-particle extinction and scattering (SPES), particle size by laser diffraction measurements, zeta potential using electrophoretic light scattering, hydrophobicity index (Hy) through dark-field (DF) microscopy, chemical composition by inductively coupled plasma-mass spectrometry (ICP-MS), Fourier transform infrared (FTIR) microscopy, and Raman microscopy. The hydrophobicity index values obtained should allow the aged MP particles to be characterizedas qualitative reference materials (RMs) with an ordinal property. Evidence for the maintained integrity and hydrophilicity of the artificially aged MP particles (in powder form) over time was obtained by measurements of zeta potential with a 33-month interval. Uniformity of subsampling with respect to particle number concentration in suspensions within a 10-day period was also investigated. It provided evidence for the possibility of reproducible spiking of a specific number of hydrophilic MP particles with relative standard deviations (RSDs) from 6.2 to 13.6%. For thedevelopment of future reference materials of artificially aged microplastics, they should be characterized for an ordinal property (artificial age as Hy-index) and nominal property (identity of PET or PE based on spectral matching).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have