Abstract

Norton and Sălăgean [Strong Gröbner bases and cyclic codes over a finite-chain ring, in Proc. Workshop on Coding and Cryptography, Paris, Electronic Notes in Discrete Mathematics, Vol. 6 (Elsevier Science, 2001), pp. 391–401] have presented an algorithm for computing Gröbner bases over finite-chain rings. Byrne and Fitzpatrick [Gröbner bases over Galois rings with an application to decoding alternant codes, J. Symbolic Comput.31 (2001) 565–584] have simultaneously proposed a similar algorithm for computing Gröbner bases over Galois rings (a special kind of finite-chain rings). However, they have not incorporated Buchberger's criteria into their algorithms to avoid unnecessary reductions. In this paper, we propose the adapted version of these criteria for polynomials over finite-chain rings and we show how to apply them on Norton–Sălăgean algorithm. The described algorithm has been implemented in Maple and experimented with a number of examples for the Galois rings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.