Abstract

In this paper, we study the cyclic self-orthogonal codes over a finite commutative chain ring [Formula: see text], where [Formula: see text] is a prime number. A generating polynomial of cyclic self-orthogonal codes over [Formula: see text] is obtained. We also provide a necessary and sufficient condition for the existence of nontrivial self-orthogonal codes over [Formula: see text]. Finally, we determine the number of the above codes with length [Formula: see text] over [Formula: see text] for any [Formula: see text]. The results are given by Zhe-Xian Wan on cyclic codes over Galois rings in [Z. Wan, Cyclic codes over Galois rings, Algebra Colloq. 6 (1999) 291–304] are extended and strengthened to cyclic self-orthogonal codes over [Formula: see text].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.