Abstract

In this paper, LCD cyclic, self dual and isodual codes over finite chain rings are investigated. It was proven recently that a non-free LCD cyclic code does not exist over finite chain rings. Based on algebraic number theory, we introduce necessary and sufficient conditions for which all free cyclic codes over a finite chain ring are LCD. We have also obtained conditions on the existence of non trivial self dual cyclic codes of any length when the nilpotency index of the maximal ideal of a finite chain ring is even. Further, several constructions of isodual codes are given based on the factorization of the polynomial xn−1 over a finite chain ring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.