Abstract
In recent decades, the positron annihilation spectroscopy technique has been used to characterize the microdefects of materials due to its advantages of non-destruction and high sensitivity on an atomic level. Positron annihilation spectroscopy technique is widely used in the microstructure study of thin film material surface and interface due to the rapid development of the slow positron beam technology. The slow positron beam technique can provide depth distribution information about material surface microstructure. Therefore, it is widely used to study the distributed defect concentrations in crystalline materials and the properties of thin films, surfaces and interfaces of layered materials. This article summarizes the slow positron beam technique applications and progress in the study of metal alloy materials. Firstly, this article introduces the slow positron beam technology development and application research achievement in detail. Secondly, it provides how to acquire the slow positron beam, introduces some kinds of and the principles of experimental measurements, and the major methods include Doppler bradening spectroscopy, coincidence Doppler broadening and PL. Thirdly, according to the defects induced by different ways, the latest experimental results about the material internal microdefect formation mechanism, evolution mechanism, defect feature research, such as microstructure, chemical environment, electron density and momentum distribution are introduced. The methods of inducing defects mainly include irradiation, physical deformation and chemical corrosion. Particles irradiation can be classified as four parts according to the different types of particles. In addition, monolayer and multilayer thin films have also been summarized. Finally, the new technique of thermal desorption spectroscopy and experimental measurements of age-momentum correlation are proposed. We can know that positron annihilation spectroscopy technology is a very special and effective nuclear spectroscopy analysis method in material microstructure study, and the slow positron beam technique makes it possible to study the depth distribution information about the thin film material surface microstructure. There is no doubt that this technique will play a huge role in the progress of material science and the creation of industrial material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.