Abstract

The purpose of this paper is to study the capabilities of the impulse response method in length and flaw detecting for concrete piles and provide a suggested method to find small-size flaws in piles. In this work, wavelet transform is used to decompose the recorded time domain signal into a series of levels. These levels are narrowband, so the mix of different dominant bandwidths can be avoided. In this study, the impulse response method is used to analyze the signal obtained from the wavelet transform to improve the judgment of the flaw signal so as to detect the flaw location. This study provides a new way of thinking in non-destructive testing detection. The results show that the length of a pile is easy to be detected in the traditional reflection time or frequency domain method. However, the small flaws within pile are difficult to be found using these methods. The proposed approach in this paper is able to greatly improve the results of small-size flaw detection within piles by reducing the effects of any noise and clarifying the signal in the frequency domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.