Abstract

Abstract The finite element method (FEM) of Monte Carlo simulations of random rough surface scattering is extended to penetrable rough surface scattering. The attraction of the method is the banded nature of the resulting matrix equation. The method yields a system of linear algebraic equations which is solved by a direct sparse symmetric matrix inversion. Convergence and accuracy of the method is demonstrated and established by varying various input parameters such as the number of evanescent waves, the number of sampling points and the surface lengths. Results with incident plane wave TE polarization are presented for both the mean reflected scattered intensity and the mean transmitted scattered intensity as a function of surface parameters such as RMS surface heights and correlation lengths. The numerical results are compared against the tapered wave integral equation (TWIE) method. The results of a tapered wave solution of the integral equation averaging over many realizations are in good numerical ag...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.