Abstract
The problem on determining conditions for the asymptotic stability of linear periodic delay systems is considered. Solving this problem, we use the function space of states. Conditions for the asymptotic stability are determined in terms of the spectrum of the monodromy operator. To find the spectrum, we construct a special boundary value problem for ordinary differential equations. The motion of eigenvalues of this problem is studied as the parameter changes. Conditions of the stability of the linear periodic delay system change when an eigenvalue of the boundary value problem intersects the circumference of the unit disk. We assume that, at this moment, the boundary value problem is self-adjoint. Sufficient coefficient conditions for the asymptotic stability of linear periodic delay systems are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.