Abstract
To obtain sufficient conditions for the asymptotic stability of linear periodic systems with fixed delay commensurable with the period of coefficients, singular numbers of the monodromy operator are used. To find these numbers, a self-adjoint boundary value problem for ordinary differential equations is applied. We study the motion of eigenvalues of this boundary value problem under a variation of a parameter. Obtaining sufficient conditions for the asymptotic stability is reduced to finding the bifurcation value of the parameter for the boundary value problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.