Abstract
Direct-contact ultrasonic drying is a novel approach to dehydrate fruits and vegetables to reduce microbial growth and post-harvest loss while preserving nutrients and the quality of the final product. Moisture content is a critical component for food behavior during drying, and its accurate evaluation in real-time is essential for food quality control. This study conveys the potential implementation of portable near-infrared spectroscopy (NIRS) combined with multivariate analysis for real-time assessment of moisture content in apple slices during direct-contact ultrasonic drying. Partial least squares regression (PLSR) and Gaussian process regression (GPR) models were developed, and their performances for different pre-treatments methods and data partitioning algorithms were evaluated with both internal cross-validation and an external dataset. Three wavelengths were selected by SPA (1359, 1517, and 1594 nm) which were then used to introduce a closed-form equation for moisture content prediction with R2p = 0.99 and RMSEP = 3.32%. The results revealed that portable NIRS combined with multivariate analysis is quite promising for monitoring and evaluating the moisture content during ultrasonic drying.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have