Abstract

This paper evaluates two alternative regression techniques for oceanic chlorophyll-a (Chl-a) content estimation. One of the investigated methodologies is the recently introduced Gaussian process regression (GPR) model. We explore two feature ranking methods derived for the GPR model, namely sensitivity analysis (SA) and automatic relevance determination (ARD). We also investigate a second regression method, the partial least squares regression (PLSR) for oceanic Chl-a content estimation. Feature relevance in the PLSR model can be accessed through the variable importance in projection (VIP) feature ranking algorithm. This paper thus analyzes three feature ranking models, SA, ARD, and VIP, which are all derived from different fundamental principles, and uses the ranked features as inputs to the GPR and PLSR to assess regression strengths. We compare the regression performances using some common performance measures, and show how the feature ranking methods can be used to find the lowest number of features to estimate oceanic Chl-a content by using the GPR and PLSR models, while still producing comparable performance to the state-of-the-art algorithms. We evaluate the models on a global MEdium Resolution Imaging Spectrometer matchup dataset. Our results show that the GPR model has the best regression performance for most of the input feature sets we used, and our conclusion is this model can favorably be used for Chl-a content retrieval, already with two features, ranked by either the SA or ARD methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.