Abstract

The article describes an algorithm for the synthesis of neural networks for controlling the gyrostabilizer. The neural network acts as an observer of the state vector. The role of such an observer is to provide feedback to the gyrostabilizer, which is illustrated in the article. Gyrostabilizer is a gyroscopic device designed to stabilize individual objects or devices, as well as to determine the angular deviations of objects. Gyrostabilizer systems will be more widely used, as they provide an effective means of motion control with a number of significant advantages for various designs. The article deals in detail with the issue of specific stage features of classical algorithms: selecting the network architecture, training the neural network, and verifying the results of feedback control. In recent years, neural networks have become an increasingly powerful tool in scientific computing. The universal approximation theorem states that a neural network can be constructed to approximate any given continuous function with the required accuracy. The back propagation algorithm also allows effectively optimizing the parameters when training a neural network. Due to the use of graphics processors, it is possible to perform efficient calculations for scientific and engineering tasks. The article presents the optimal configuration of the neural network, such as the depth of memory, the number of layers and neurons in these layers, as well as the functions of the activation layer. In addition, it provides data on dynamic systems to improve neural network training. An optimal training scheme is also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.