Abstract
Short columns packed with highly crosslinked 2.3 μm poly-styrene/divinylbenzene (PS/DVB) particles were used for rapid and efficient separation of proteins and peptides by reversed-phase high-performance liquid chromatography at elevated temperatures. Enhancement of the diffusivities of the sample components at elevated temperatures together with the short diffusion pathlength with the micropellicular polymeric stationary phases were responsible for high efficiency, high speed of analysis, and short column regeneration times. Underivatized PS/DVB beads as well as PS/DVB microspheres which have been modified with polyvinylalcohol or octadecyl chains on the surface were synthesized, employed, and compared to HY-TACH-C18, a commercially available micropellicular octadecyl-silica stationary phase, for the separation of proteins, octapeptides and tryptic protein digests. Highest performance was obtained with the silica- and PS/DVB-based octadecyl stationary phases, which exhibited similar column efficiencies but different selectivities for proteins and peptides. The minimum detectability at 214 nm and the maximum loading capacity for ribonuclease A using analytical 30×4.6 mm I.D. columns were 10 ng (0.6 pmol) and 1 μg, respectively. Finally, reversed-phase HPLC with a 60×2 mm I.D. narrow-bore column packed with micropellicular octadecyl PS/DVB was coupled successfully to electrospray mass spectrometry at a flow-rate of 0.15 mL min−1 and on-line full-scan mass spectra for molecular mass determination and identification of proteins in the lower picomol range were obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.