Abstract
Predicting the maximum ground surface settlement (MGS) beneath road embankments is crucial for safe operation, particularly on soft foundation soils. Despite having been explored to some extent, this problem still has not been solved due to its inherent complexity and many effective factors. This study applied support vector machines (SVM) and artificial neural networks (ANN) to predict MGS. A total of four kernel functions are used to develop the SVM model, which is linear, polynomial, sigmoid, and Radial Basis Function (RBF). MGS was analysed using the finite element method (FEM) with three dimensionless variables: embankment height, applied surcharge, and side slope. In comparison to the other kernel functions, the Gaussian produced the most accurate results (MARE = 0.048, RMSE = 0.007). The SVM-RBF testing results are compared to those of the ANN presented in this study. As a result, SVM-RBF proved to be better than ANN when predicting MGS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Nonlinear Analysis and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.