Abstract

In this work, a general implicit block method (GIBM) with two points for solving general fifth-order initial value problems (IVPs) has been derived. GIBM is proposed by adopting the basis functions of Hermite interpolating polynomials. GIBM is presented to be suitable with the numerical solutions of fifth-order IVPs. Hence, the derivation of GIBM has been introduced. Numerical implementations compared with the existing numerical GRKM method are used to prove the accuracy and efficiency of the proposed GIBM method. The impressive numerical results of the test problems using the proposed GIBM method agree well with the approximated solutions of them using the existing GRKM method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.