Abstract
In order to determine the appropriate model for predicting the maximum surface settlement caused by EPB shield tunneling, three artificial neural network (ANN) methods, back-propagation (BP) neural network, the radial basis function (RBF) neural network, and the general regression neural network (GRNN), were employed and the results were compared. The nonlinear relationship between maximum ground surface settlements and geometry, geological conditions, and shield operation parameters were considered in the ANN models. A total number of 200 data sets obtained from the Changsha metro line 4 project were used to train and validate the ANN models. A modified index that defines the physical significance of the input parameters was proposed to quantify the geological parameters, which improves the prediction accuracy of ANN models. Based on the analysis, the GRNN model was found to outperform the BP and RBF neural networks in terms of accuracy and computational time. Analysis results also indicated that strong correlations were established between the predicted and measured settlements in GRNN model with MAE = 1.10, and RMSE = 1.35, respectively. Error analysis revealed that it is necessary to update datasets during EPB shield tunneling, though the database is huge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.