Abstract Several computer-aided techniques have been developed in recent past to improve interpretational accuracy of subsurface geology. This paradigm shift has provided tremendous success in variety of Machine Learning Application domains and help for better feasibility study in reservoir evaluation using multiple classification techniques. Facies classification is an essential subsurface exploration task as sedimentary facies reflect associated physical, chemical, and biological conditions that formation unit experienced during sedimentation activity. This study however, employed formation samples for facies classification using Machine Learning (ML) techniques and classified different facies from well logs in seven (7) wells of the PORT Field, Offshore Niger Delta. Six wells were concatenated during data preparation and trained using supervised ML algorithms before validating the models by blind testing on one well log to predict discrete facies groups. The analysis started with data preparation and examination where various features of the available well data were conditioned. For the model building and performance, support vector machine, random forest, decision tree, extra tree, neural network (multilayer preceptor), k-nearest neighbor and logistic regression model were built after dividing the data sets into training, test, and blind test well data. Results of metric score for the blind test well estimated for the various models using Jaccard index and F1-score indicated 0.73 and 0.82 for support vector machine, 0.38 and 0.54 for random forest, 0.78 and 0.83 for extra tree, 0.91 and 0.95 for k-nearest neighbor, 0.41 and 0.56 for decision tree, 0.63 and 0.74 for logistic regression, 0.55 and 0.68 for neural network, respectively. The efficiency of ML techniques for enhancing the prediction accuracy and decreasing the procedure time and their approach toward the data, makes it importantly desirable to recommend them in subsurface facies classification analysis.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call