Purpose: To explore the role of artificial intelligence and machine learning (ML) techniques in oncological urology. In recent years, our group investigated the prostate cancer gene 3 (PCA3) score, prostate-specific antigen (PSA), and free-PSA predictive role for prostate cancer (PCa), using the classical binary logistic regression (LR) modeling. In this research, we approached the same clinical problem by several different ML algorithms, to evaluate their performances and feasibility in a real-world evidence PCa detection trial.Materials and Methods: The occurrence of a positive biopsy has been studied in a large cohort of 1,246 Italian men undergoing first or repeat biopsy. Seven supervised ML algorithms were selected to build biomarkers-based predictive models: generalized linear model, gradient boosting machine, eXtreme gradient boosting machine (XGBoost), distributed random forest/ extremely randomized forest, multilayer artificial Deep Neural Network, naïve Bayes classifier, and an automatic ML ensemble function.Results: All the ML models showed better performances in terms of area under curve (AUC) and accuracy, when compared to LR model. Among them, an XGBoost model tuned by the autoML function reached the best metrics (AUC, 0.830), well overtaking LR results (AUC, 0.738). In the variable importance ranking coming from this XGBoost model (accuracy, 0.824), the PCA3 score importance was 3-fold and 4-fold larger, when compared to that of free-PSA and PSA, respectively.Conclusions: The ML approach proved to be feasible and able to achieve good predictive performances with reproducible results: it may thus be recommended, when applied to PCa prediction based on biomarkers fluctuations.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call