Abstract

Complex structural systems, lithological differences, and extreme heterogeneity of aquifers combine to create a complex karst aquifer structure in alpine and gorge areas; however, because of the topography, direct investigation of aquifer structure is difficult. In this study, field survey, hydrochemical, and isotopic data are analyzed to reveal the development of karst groundwater and to describe the karst water cycle in Genie Mountain, Qinghai–Xizang Plateau. The results show that groundwater circulation is mainly controlled by active fracture. Atmospheric precipitation and melting ice and snow are the groundwater recharge sources, and recharge areas are mostly located in high mountains above 4500 m a.s.l. The direction of groundwater flow is mostly controlled by the Jinshajiang active Fault, with drainage areas at the intersection of multiple faults. There are two regional karst water runoff conduits. One is along the Edexi-Hongjunshan Fault, where groundwater runs from south to north; the other is along Gangtonglong Fault, where groundwater runs from north to south, and is discharged at Gangtonglong gully. The groundwater cycle can be divided into three levels: epikarst water circulation; mid to deep karst water circulation; and deep geothermal water circulation. The karst springs located in the outlet of the Huolong gully contain markedly higher levels of Na+ and SO42− than other karst springs because of the leaching effect of groundwater on mirabilite. The presence of evaporites in Huolong gully indicates that the plateau planation formed by the structural uplift will change the local climatic conditions, and then affect the groundwater circulation process and the water–rock reaction in the process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.