Abstract

The amount of coal combustion byproducts, such as fly ash and bottom ash, generated by coal-based thermal power plants has been increasing at an alarming rate, hence creating huge problems on their treatments and disposals. One of the promising approaches for proper utilization of these byproducts is the conversion of fly ash and bottom ash to zeolites. In this research, zeolites wereprepared from coal bottom ash (RBA) by relatively simple and cheap conversion process using NaOH at 90°C for 24h. Prior to this, the RBA was pretreated using H2SO4 for 4h. The resulted zeolite was characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD results confirmed the formation of sodium aluminosilicate hydrate predominated upon the bottom ash and NaOH 5M ratio of 1:8. XRF results also indicated the domination of Al2O3 and SiO2 in the zeolite composition. FTIR spectra showed characteristic zeolite peaks at 900-1100, 400-500 and 550-660 cm–1forSi-O, Al-O, and Si-O-Al absorptions, respectively. The synthetic zeolite was then applied as an adsorbent for lignin and methylene blue in aqueous solutions. It was found that the Qmax for lignin and methylene blue was16.13 mg/g and 34.13 mg/g, respectively. When fitted using Langmuir and Freundlich isotherm models, the methylene blue adsorption data fitted Langmuir isotherm while those of lignin fitted Freundlich isotherm. It was concluded that the chemical interaction between zeolite and methylene blue may lead to the chemisorption mechanism to prevail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call